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ABSTRACT

The filter bank design derives from a
three-dimensional solution to the equation of
motion of the basilar membrane. In particu-
lar, the inter-filter coupling constants depend
quadratically on the breadth of the basilar
membrane, which may vary along its length.

We describe the implementation of a
design based on the physical properties of
the average human cochlea. Decreasing
inter-filter feedback significantly attenuates
frequency modulations in the range of for-
mant movements in speech, while leaving
stationary tones relatively intact. We demon-
strate this effect with cochleagrams for
chirps, tones and speech.

This filter bank design is currently used as
a front-end processor to a neural-network
based continuous-speech recognizer. Results
are encouraging. Because formant dynamics
encode important perceptual information,
this filter bank may be useful as initial analy-
sis for automatic speech recognition.

1. Intr oduction

The proposed filter bank is motivated by the
need to obtain an initial spectral represen-
tation of speech signals that bears sufficient
similarity to that performed by the human
ear to support a neural model of speech
perception[1][2][3]. The model is to be used
for acoustic-phonetic decoding in speech
recognition. The aim is not to match cochlea
tuning curves, or to reproduce its various
nonlinear responses, but to capture critical
speech dynamics.

Of the many and intricate structures in the
cochlea, the basilar membrane and the hair
cells have been most extensively modeled
(see reviews [4],[5]). This paper deals only
with the basilar membrane.

Many simplifying assumptions about the
hydrodynamics of the fluid reduce the
nonlinear Navier-Stokes equations to the
linear homogeneous Laplace equation for the
fluid pressure[6]. We further simplify the
shape of the cochlea from a spiral to two
stacked parallelopipeds separated by the
basilar membrane(Figure 1). We can then
formulate the fluid pressure as a solution to
the Laplace equation with appropriate
boundary conditions.The membrane itself is
assumed to consist of members with signif-
icant transverse stiffness, and negligible
longitudinal stiffness, making it a system of
vibrating beams, coupled only via the
surrounding fluid. We assume the difference
in the fluid pressure across the membrane
alone drives its vibration, the displacement
of which reacts on the fluid pressure (the
point impedance assumption).

Many filter banks have been proposed based
on such an underlying cochlea model. The
proposed filter bank differs from others(e.g.,
[7],[8])in its substantial inter-filter feedback.
Each filter inputs from all other filters, and
outputs to all other filters. We show the
utility of this feedback in capturing formant
dynamics.
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2. The Cochlea Filter Bank
The equation of motion of the basilar
membrane as point impedances is:

(eq. 1)

where p is the pressure in the scala vestibuli,
B is the effective breadth of the basilar
membrane, m the mass, r the damping and k
the stiffness of the membrane sections.
p(x,y,z) is the solution to the Laplace
equation which results from the simplifica-
tions of the hydrodynamics of the cochlear
chamber as incompressible fluid in inviscid
flow within rigid walls:

(eq. 2)

where the integral is over the boundary
of the enclosed volume, including the upper
and lower surfaces of the basilar membrane
itself but excluding the helicotrema. g is the
Green’s functions with boundary condition

(eq. 3)

where  is the partial derivative normal to

the boundary. At the helicotrema, both g and

p = 0. The boundary condition for p(x,y,z) is

(eq. 4)

except at the windows:

(eq. 5)

and the membrane:

(eq. 6)

 is the fluid density,  is the stapes

velocity and  is the fluid velocity at the
membrane. The integral over the boundary
therefore reduces to one over the windows
and the membrane only. The Green’s
functions is

(eq. 7)

Figure 1 Cochlea Model
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Defining the effective breadth B(x) as

(eq. 8)

and taking the first approximation of (eq. 7),
the equation of motion,(eq. 1), when
discretized along x at a rate of , for a

total of M filter sections, becomes:

(eq. 9)

where the cross-sectional area
and

(eq. 10)

Discretized in time by

(eq. 11)

(eq. 9) yields the following filter bank
equations

(eq. 12)

The filter bank consists of resonators with
all-to-all inter-filter feedback. T is the
sampling period, and the coefficients are
given by

(eq. 13)

We have implemented this filter bank in the
time domain using the physical properties of
the average human cochlea as given by [9].
A = 0.01 cm2. Bi tapers from 0.0075 cm at
the oval window at a rate of 0.0012(cm/cm).
105 filter sections span a frequency range
from 187Hz to 6Khz. The mass, m(x),
damping, r(x) and stiffness, k(x) vary
exponentially with x in such a way as to keep
the quality factor

constant.  This impl ies the fi l ters are
narrowband in the lower frequencies, and
become increasingly broadband towards the
higher frequencies.

Input signals are sampled at 13.3Khz. The
fi l ter bank output is rectified, leakily
integrated, compressed and decimated to
1Khz.

3. Inter-filter Feedback and
Formant Dynamics

The coupl ing coeff ic ients  are

quadra t i c  in  the  b read th ,  and
determine the strength of the inter-filter

feedback .  The  mat r i x  i s

invertible:

(eq. 14)
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where .The matrix  is a lower-trian-

gular matrix, in which the first column  is
comparable in magnitude to the diagonal
elements. The off-diagonal elements in each
row decrease to O(10-3) relative to the
diagonal elements within about 60 sections.
Because the matrix multiplication is the most
expensive computation in the implemen-
tation, we looked at the effects of reducing
the inter-filter feedback by truncating the off-
diagonal elements to the first 63 in each row.
The number 63 is chosen because any
additional truncation results in response
instability.

Figure 2 shows the effects of truncation. The
multiple tones are spaced at intervals of 1/4
octave, with the top tone at 6KHz. Feedback
reduction leaves the tones more or less
intact; in fact, it boosts them around the 63rd
channel. However, feedback reduction also
broadens the filter response to frequencies
higher than their resonant frequencies,
resulting in an undesirable saturation artifact
in a range of channels around channel 63. In
the case of the up-down chirp, whose rates of
frequency change are typical of glides, the
reduction in feedback severely attenuates the
lower half of the frequency modulations. The
rectangles in the cochleagrams for “greasy
wash” indicate the areas of severe attenu-
ation of formant movements. In addition, in
those portions of both the chirp and the
speech signal where high frequencies
predominate, the feedback reduction again
results in the saturation artifact.

4. Conclusions

This design is currently used as a front-end
processor to a speech recognizer[2][3]. We
attribute the high phoneme accuracy (87%)
we obtained partly to the ability of the filter
bank at capturing speech dynamics.
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